Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data from repeated measurements of predawn and midday water potentials on Quercus agrifolia and Quercus douglassi trees at Sedgwick Reserve, CA, USA from 2022 - 2024. The data includes the following columns: Column name Description individual_id Unique numeric ID for individual tree site Name of site location, represents a spatially distinct group of trees species Quercus agrifolia and Quercus douglassii date date of data collection, in YYYYMMDD pd_md Indicates whether measurements were taken at predawn (pd, 1-3 hours before sunrise) or midday (md, within 1.5 hours of solar noon) water_potential_mean Mean water potential measurements for each tree/date/time (MPa). water_potential_sd Standard deviation of water potential measurements for each tree/date/time (MPa) water_potential_n Number of water potential measurements for each tree/date/time latitude Location of individual tree, latitude in decimal degrees longitude Location of individual tree, longitude in decimal degrees coord_system EPSG:4326-WGS 84 For details on collection methods, see: Boving I, Allen J, Brodrick PG, Chadwick KD, Trugman A, Anderegg LDL. The Unstable Relationship Between Drought Status and Leaf Water Content Complicates the Remote Sensing of Tree Drought Stress. Glob Chang Biol. 2025 Apr;31(4):e70188. doi: 10.1111/gcb.70188. PMID: 40249004; PMCID: PMC12007071.more » « less
-
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree speciesPopulus fremontiiwere studied in a controlled common garden during a record summer heatwave—where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.more » « less
-
Abstract Two decades of widespread drought-induced forest mortality events on every forested continent have raised the specter of future unpredictable, rapid ecosystem changes in 21stcentury forests. Yet our ability to predict drought stress, much less drought-induced mortality across the landscape remains limited. This uncertainty stems at least in part from an incomplete understanding of within-species variation in hydraulic physiology, which reflects the interaction of genetic differentiation among populations (ecotypic variation) and phenotypic plasticity in response to growth environment. We examined among-population genetic differentiation in a number of morphological and hydraulic traits in California blue oak (Quercus douglasii) using a 30 year old common garden. We then compared this genetic trait differentiation and trait-trait integration to wild phenotypes in the field from the original source populations. We found remarkably limited among-population genetic differentiation in all traits in the common garden, but considerable site-to-site variation in the field. However, it was difficult to explain trait variation in the field using site climate variables, suggesting that gridded climate data does not capture the drivers of plasticity in drought physiology in this species. Trait-trait relationships were also considerably stronger in the field than in the garden, particularly links between leaf morphology, leaf hydraulic efficiency and stem hydraulic efficiency. Indeed, while twelve of 45 potential trait-trait relationships showed significant wild phenotypic correlations, only four relationships showed both genetic and phenotypic correlations, and five relationships showed significantly different genetic and phenotypic correlations. Collectively, our results demonstrate limited ecotypic variation in drought-related physiology but considerable geographic variation in physiology and phenotypic integration in the wild, both driven largely by plasticity.more » « less
-
Biogeographic history can set initial conditions for vegetation community assemblages that determine their climate responses at broad extents that land surface models attempt to forecast. Numerous studies have indicated that evolutionarily conserved biochemical, structural, and other functional attributes of plant species are captured in visible-to-short wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we present a remotely sensed phylogenetic clustering and an evolutionary framework to accommodate spectra, distributions, and traits. Spectral properties evolutionarily conserved in plants provide the opportunity to spatially aggregate species into lineages (interpreted as “lineage functional types” or LFT) with improved classification accuracy. In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013 Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California flight box, to investigate the potential for incorporating evolutionary thinking into landcover classification. We link the airborne hyperspectral data with vegetation plot data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal and spatial differences in our training data, we classified plant lineages with moderate reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an assessment of classification error and detail study limitations to facilitate future LFT development. This work demonstrates that lineage-based methods may be a promising way to leverage the new-generation high-resolution and high return-interval hyperspectral data planned for the forthcoming satellite missions with sparsely sampled existing ground-based ecological data.more » « less
-
Summary Plant functional traits are powerful ecological tools, but the relationships between plant traits and climate (or environmental variables more broadly) are often remarkably weak. This presents a paradox: Plant traits govern plant interactions with their environment, but the environment does not strongly predict the traits of plants living there. Unpacking this paradox requires differentiating the mechanisms of trait variation and potential confounds of trait–environment relationships at different evolutionary and ecological scales ranging from within species to among communities. It also necessitates a more integrated understanding of physiological and evolutionary equifinality among many traits and plant strategies, and challenges us to understand how supposedly ‘functional’ traits integrate into a whole‐organism phenotype in ways that may be largely orthogonal to environmental tolerances.more » « less
-
Summary Predictive relationships between plant traits and environmental factors can be derived at global and regional scales, informing efforts to reorient ecological models around functional traits. However, in a changing climate, the environmental variables used as predictors in such relationships are far from stationary. This could yield errors in trait–environment model predictions if timescale is not accounted for.Here, the timescale dependence of trait–environment relationships is investigated by regressingin situtrait measurements of specific leaf area, leaf nitrogen content, and wood density on local climate characteristics summarized across several increasingly long timescales.We identify contrasting responses of leaf and wood traits to climate timescale. Leaf traits are best predicted by recent climate timescales, while wood density is a longer term memory trait. The use of sub‐optimal climate timescales reduces the accuracy of the resulting trait–environment relationships.This study concludes that plant traits respond to climate conditions on the timescale of tissue lifespans rather than long‐term climate normals, even at large spatial scales where multiple ecological and physiological mechanisms drive trait change. Thus, determining trait–environment relationships with temporally relevant climate variables may be critical for predicting trait change in a nonstationary climate system.more » « less
-
null (Ed.)Airborne pollen has major respiratory health impacts and anthropogenic climate change may increase pollen concentrations and extend pollen seasons. While greenhouse and field studies indicate that pollen concentrations are correlated with temperature, a formal detection and attribution of the role of anthropogenic climate change in continental pollen seasons is urgently needed. Here, we use long-term pollen data from 60 North American stations from 1990 to 2018, spanning 821 site-years of data, and Earth system model simulations to quantify the role of human-caused climate change in continental patterns in pollen concentrations. We find widespread advances and lengthening of pollen seasons (+20 d) and increases in pollen concentrations (+21%) across North America, which are strongly coupled to observed warming. Human forcing of the climate system contributed ∼50% (interquartile range: 19–84%) of the trend in pollen seasons and ∼8% (4–14%) of the trend in pollen concentrations. Our results reveal that anthropogenic climate change has already exacerbated pollen seasons in the past three decades with attendant deleterious effects on respiratory health.more » « less
An official website of the United States government
